Chill-coma temperature in Drosophila: effects of developmental temperature, latitude, and phylogeny.
نویسندگان
چکیده
We modify and apply a nonlethal technique for rapidly quantifying the cold tolerance of large numbers of Drosophila and other small insects. Flies are transferred to individual vials, cooled in groups in progressive 0.5 degrees C steps, and checked for loss of righting response (chill-coma temperature [T(cc)]). Flies recover quickly when transferred to ambient temperature, and thus this technique potentially can be used in selection experiments. We applied this technique in several experiments. First, we examined the sensitivity of T(cc) to developmental temperature. Drosophila melanogaster (Congo, France), Drosophila subobscura (Spain, Denmark), and Drosophila ananassae (India) were reared from egg to adult at 15 degrees, 18 degrees, 25 degrees, or 29 degrees C, transferred to 15 degrees C for several days, and then progressively chilled: T(cc) was positively related to developmental temperature, inversely related to latitude of the population, but independent of sex. The sensitivity of T(cc) to developmental temperature (acclimation flexibility) was marked: T(cc) shifted on average 1 degrees for each 4 degrees C shift in developmental temperature. Among 15 species of the obscura group of Drosophila, T(cc) varied from -0.1 degrees to 4.5 degrees C; T(cc) was inversely related to latitude in both nonphylogenetic and phylogenetically based ANCOVA (standardized independent contrasts) and was unrelated to body size.
منابع مشابه
Muscle membrane potential and insect chill coma.
Chill-susceptible insects enter a reversible paralytic state, termed chill coma, at mild low temperatures. Chill coma is caused by neuromuscular impairment, allegedly triggered by cold-induced depolarization of muscle resting membrane potential (Vm). We used five Drosophila species that vary in cold tolerance (chill coma temperature spanning ∼11°C) and repeatedly measured muscle Vm during a dow...
متن کاملThe capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance
Many insects, including Drosophila, succumb to the physiological effects of chilling at temperatures well above those causing freezing. Low temperature causes a loss of extracellular ion and water homeostasis in such insects, and chill injuries accumulate. Using an integrative and comparative approach, we examined the role of ion and water balance in insect chilling susceptibility/ tolerance. T...
متن کاملCold hardening modulates K+ homeostasis in the brain of Drosophila melanogaster during chill coma.
Environmental temperature is one of the most important abiotic factors affecting insect behaviour; virtually all physiological processes, including those which regulate nervous system function, are affected. At both low and high temperature extremes insects enter a coma during which individuals do not display behaviour and are unresponsive to stimulation. We investigated neurophysiological corr...
متن کاملSeasonal variation in basal and plastic cold tolerance: Adaptation is influenced by both long‐ and short‐term phenotypic plasticity
Understanding how thermal selection affects phenotypic distributions across different time scales will allow us to predict the effect of climate change on the fitness of ectotherms. We tested how seasonal temperature variation affects basal levels of cold tolerance and two types of phenotypic plasticity in Drosophila melanogaster. Developmental acclimation occurs as developmental stages of an o...
متن کاملCold-induced depolarization of insect muscle: differing roles of extracellular K+ during acute and chronic chilling.
Insects enter chill coma, a reversible state of paralysis, at temperatures below their critical thermal minimum (CTmin), and the time required for an insect to recover after a cold exposure is termed chill coma recovery time (CCRT). The CTmin and CCRT are both important metrics of insect cold tolerance that are used interchangeably, although chill coma recovery is not necessarily permitted by a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological and biochemical zoology : PBZ
دوره 74 3 شماره
صفحات -
تاریخ انتشار 2001